Cách Tính Đạo Hàm Hàm Số Mũ, Bài Tập Đạo Hàm Hàm Số Mũ Và Logarit

Marathon Team - 18/02/2022

Đạo hàm hàm số mũ được xem là phần kiến thức quan trọng trong chương trình Giải tích ở THPT. Trong các đề thi sẽ có nhiều dạng bài tập liên quan đến phần kiến thức này. Vì vậy, nhằm giúp các em ôn luyện cũng như ghi nhớ lâu hơn các lý thuyết cơ bản và biết cách giải bài tập đạo hàm hàm số mũ, Marathon Education sẽ chia sẻ một số trọng tâm kiến thức và các bài tập áp dụng trong bài viết sau.

>>> Xem thêm:

Lý thuyết về hàm số mũ

Lý thuyết về đạo hàm hàm số mũ
Lý thuyết về hàm số mũ (Nguồn: Internet)

Để có thể vận dụng công thức tính toán linh hoạt, đầu tiên, các em phải nắm vững định nghĩa và tính chất hàm số mũ. Dưới đây là định nghĩa và các tính chất cơ bản của hàm số mũ mà các em cần ghi nhớ.

Định nghĩa

Theo như SGK Toán 12, hàm số mũ được định nghĩa như sau:

Hàm số mũ là một hàm số có dạng y = ax với điều kiện a > 0 và a ≠ 1.

Tính chất

Một số tính chất quen thuộc của hàm số mũ y = ax với điều kiện a > 0 và a ≠ 1:

  • Tập xác định: D = R.
  • Đạo hàm: y’= ax.lna (với x ∈ R).
  • Chiều biến thiên:
    • a > 1: Hàm số đồng biến.
    • 0 < a < 1: Hàm số nghịch biến.
  • Đường tiệm cận: Trục Ox là tiệm cận ngang.
  • Đồ thị hàm số mũ y = ax luôn nằm phía trên trục hoành, cắt trục tung tại một điểm (0;1) và đi qua điểm (1;a).

Lý thuyết tổng quát về đạo hàm

Để giải các bài toán đạo hàm hàm số mũ, các em cần phải hiểu rõ lý thuyết cơ bản về đạo hàm.

Định nghĩa đạo hàm

Đạo hàm của hàm số y = f(x) tại một điểm x có nghĩa là giới hạn (nếu có) giữa tỉ số số gia hàm số Δy = y – y0 với số gia của đối số tại Δx = x – x khi số gia của đối số tiến đến 0.

f'(x_0)=\lim\limits_{x \to x_0}\frac{f(x)-f(x_0)}{x-x_0} \ hay \ y'(x_0)=\lim\limits_{Δx \to 0}\frac{Δy}{Δx}

Trong đó, f'(x) và y'(x) là ký hiệu của đạo hàm hàm số  y=f(x) tại một điểm x0.

Lưu ý rằng, giá trị của đạo hàm hàm số tại một điểm thể hiện chiều biến thiên và độ lớn biến thiên của hàm số.

Các công thức đạo hàm liên quan đến hàm số mũ

Để giải được các dạng bài toán đạo hàm hàm số mũ, các em cần thuộc lòng những định lý sau đây:

  • Định lý 1: Đối với hàm số y=xn với điều kiện n ∈ N và n>1 sẽ có đạo hàm với mọi x ∈ R và y’=(xn)’=n.xn-1.
  • Định lý 2: Giả sử u = u(x) và v = v(x) là hai hàm số có đạo hàm tại điểm x thuộc khoảng xác định, ta có những tính chất sau:
\begin{aligned}
&\circ (u + v)' = u' + v'\\
&\circ (u - v)' = u' - v'\\
&\circ (uv)' = u'v + uv'\\
&\circ \left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}\ với\ v=v(x)\not=0
\end{aligned}

Từ đó, ta được hai hệ quả:

\begin{aligned}
&\circ\text{Hệ quả 1: Nếu k là một hằng số nhất định thì }(ku)'=ku'.\\
&\circ \left(\frac{1}{v}\right)' = \frac{v'}{v^2}\ với\ v=v(x)\not=0
\end{aligned}

>>> Xem thêm: Công Thức Đạo Hàm Hàm Hợp Và Bài Tập Ứng Dụng

Cách tính đạo hàm hàm số mũ

Lý thuyết và công thức đạo hàm hàm số mũ trong chương trình Giải tích lớp 12 sẽ được trình bày cụ thể như sau:

Lý thuyết đạo hàm hàm số mũ

Về tổng quát, lý thuyết của đạo hàm hàm số mũ chỉ gồm một số ý chính quan trọng cần phải nhớ, đó là:

  • Cho một hàm số y = ax thì ta có, đạo hàm của hàm số này sẽ được viết dưới dạng y’ = axlna.
  • Ở trường hợp y = au(x) thì đạo hàm của hàm số sẽ là: y’ = u'(x)au(x)lna.

Công thức đạo hàm hàm số mũ

Từ lý thuyết, ta sẽ suy ra được một số công thức tính đạo hàm hàm số mũ như sau:

\begin{aligned}
&(a^x)'=a^x.lna ⇒ (a^u)'=u'.a^u.lna\\
&(e^x)'=e^x ⇒ (e^u)'=e^u.u'\\
&(\sqrt[n]u)'=\frac{u'}{n.\sqrt[n]{u^{n-1}}}\\
\end{aligned}

Các bài tập đạo hàm hàm số mũ và logarit

Để có thể nhớ tốt các công thức đạo hàm hàm số mũ nêu trên, các em hãy theo dõi một số ví dụ cụ thể dưới đây:

\begin{aligned}
\bull \ \ y&=2^{1-2x}\\
y'&=(1-2x)'=-2\\
\bull \ \ y&=(x^2+1).2^{2x}\\
y'&=(x^2+1)'.2^{2x}+(x^2+1).(2^{2x})'\\
&=2x.2^{2x}+(x^2+1).(2x)'.2^{2x}.ln2\\
&=2x.2^{2x}+(x^2+1).2.2^{2x}.ln2\\
\bull \ \ y&=e^{2x}\\
y'&=(2x)'.e^{2x}=2e^{2x}\\
\bull \ \ y&=\frac{e^{2x}-e^{-2x}}{x}\\
y'&=\frac{(e^{2x}-e^{-2x})'.x-(e^{2x}-e^{-2x}).x'}{x^2}\\
&=\frac{[(e^{2x})'-(e^{-2x})'].x-(e^{2x}-e^{-2x}).1}{x^2}\\
&=\frac{[2e^{2x}-(-2)e^{-2x}].x-(e^{2x}-e^{-2x})}{x^2}\\
&=\frac{(2e^{2x}+2e^{-2x}).x-(e^{2x}-e^{-2x})}{x^2}\\
\bull \ \ y&=e^{2x+x^2}\\
y'&=(2x+x^2)'.e^{2x+x^2}=(2+2x).e^{2x+x^2}
\end{aligned}

>>> Xem thêm: Đạo Hàm Trị Tuyệt Đối Là Gì? Công Thức Tính Nhanh Và Bài Tập Áp Dụng

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Đạo hàm hàm số mũ là phần kiến thức trọng tâm trong chương trình Toán 12 và liên quan đến nhiều đề kiểm tra sau này. Hy vọng sau khi đọc xong bài viết, các em sẽ ghi nhớ lý thuyết, công thức tính và biết cách giải các bài tập đạo hàm hàm số mũ và logarit nhanh chóng, chính xác. Chúc các em luôn học tập thật tốt và đạt điểm cao trong các kỳ thi!

CÓ THỂ BẠN QUAN TÂM