Hoán Vị, Chỉnh Hợp, Tổ Hợp – Lý Thuyết Toán 11 Và Bài Tập Vận Dụng

Marathon Team - 16/03/2022

Bước vào chương trình Toán học 11, các em sẽ được học về hoán vị chỉnh hợp tổ hợp. Nếu không nắm vững lý thuyết thì khi gặp 3 khái niệm này các em sẽ rất dễ nhầm lẫn, dẫn đến giải không chính xác yêu cầu đề bài. Bài viết sau của Marathon Education sẽ giúp các em hiểu rõ hơn về hoán vị chỉnh hợp tổ hợp và hướng dẫn giải một số bài tập liên quan.

>>> Xem thêm: Quy Tắc Đếm – Lý Thuyết Toán 11 Và Bài Tập Vận Dụng

>>> Xem thêm: Học Online Toán 11 Bứt Phá Điểm Số Với Marathon Education

Khái niệm giai thừa

Cho n là một số nguyên dương, n giai thừa là tích của n số nguyên dương đầu tiên, ký hiệu là n!.

n! = 1.2.3…n

Quy ước:

\begin{aligned}
&\small \bull 0!=1\\
&\small \bull n!=(n-1)!n\\
&\small \bull \frac{n!}{p!}=(p+1)(p+2)...n\text{ (với }n>p)\\
&\small \bull \frac{n!}{(n-p)!}=(n-p+1)(n-p+2)...n\text{ (với }n>p)\\
\end{aligned}

Hoán vị là gì? 

Hoán vị là gì? Hoán vị chỉnh hợp tổ hợp
Hoán vị là gì? (Nguồn: Internet)

Định nghĩa: Hoán vị được hiểu đơn giản là hoán đổi vị trí. Cụ thế, cho một tập hợp có n phần tử khác nhau với n ≥ 1 thì mỗi cách sắp xếp của n phần tử mà mỗi phần tử xuất hiện một lần duy nhất thì được gọi là một hoán vị của n phần tử.

Định lý: Pn là ký hiệu số các hoán vị của n phần tử đã cho. Ta có:

Pn = n! = n(n-1)(n-2)…2.1

Ví dụ: Các em hãy tính số cách để sắp xếp 6 bạn học sinh thành một hàng dọc.

Phương pháp giải:

Dựa theo định nghĩa hoán vị thì mỗi cách sắp xếp 6 bạn học sinh thành một hàng học là 1 hoán vị của 6 phần tử. Vậy nên, số cách để sắp xếp 6 bạn học sinh thành một hàng dọc là:

P6= 6! = 6.5.4.3.2.1 = 720 (cách)

>>> Xem thêm: Phép Thử Và Biến Cố – Lý Thuyết Toán 11 Và Bài Tập Vận Dụng

Chỉnh hợp là gì?

Chỉnh hợp là gì? Hoán vị chỉnh hợp tổ hợp
Chỉnh hợp là gì? (Nguồn: Internet)

Định nghĩa: Tập hợp A có n phần tử và n ≥ 1. Khi lấy k phần tử khác nhau trong n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó thì kết quả là 1 chỉnh hợp chập k của n phần tử.

Các em cần chú ý mỗi hoán vị của n phần tử đã cho là một chỉnh hợp chập n của n phần tử.

Định lý:

\small  \ A_n^k \text{ là ký hiệu số chỉnh hợp chập k của n phần tử khác nhau đã cho. Ta có: }\\
\small A_n^k=n(n-1)...(n-k+1)=\frac{n!}{(n-k)!}\ (1\le k\le n)

Ví dụ: Cho các chữ số: 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau.

Phương pháp giải:

Mỗi số tự nhiên có 4 chữ số khác nhau được lập bằng cách lấy 4 chữ số từ tập hợp A = {1, 2, 3, 4, 5, 6, 7} và sắp xếp theo thứ tự nhất định. Mỗi số lập được chính là một chỉnh hợp chập 4 của 7 phần tử đã cho.

Vậy, từ tập hợp các số đã cho, có thể lập được số số tự nhiên có 4 chữ số khác nhau là:

A_7^4=840 \text{ số }

Tổ hợp là gì?

Định nghĩa: Cho tập hợp A gồm n phần tử khác nhau, n ≥ 1. Mỗi tập hợp con bao gồm k phần tử khác nhau của n phần tử đã cho (0 ≤ k ≤ n) được gọi là một tổ hợp chập k của n phần tử.

Quy ước tổ hợp chập 0 của n phần tử là một tập hợp rỗng.

Định lý:

\small \text{Số các tổ hợp chập k của n phần tử khác nhau đã cho được ký hiệu là }C_n^k\\
\small C_n^k=\frac{n!}{k!(n-k)!}=\frac{A_n^k}{k!}\ (0 \le k \le n)

Với mọi n ≥ 1 và 0 ≤ k ≤ n, ta có:

\begin{aligned}
&\small \bull C_n^k=C_n^{n-k}\\
&\small \bull C_n^k+C_n^{k+1}=C_{n+1}^{k+1}
\end{aligned}

Ví dụ: Một bàn học có 3 học sinh nam và 2 học sinh nữ. Vậy có bao nhiêu cách để chọn ra 2 bạn làm trực nhật?

Phương pháp giải:

Cứ mỗi cách chọn ra 2 bạn làm trực nhật là một tổ hợp chập 2 của 5 phần tử khác nhau. Vậy, có tất cả số cách chọn là:

C_5^2=10

>>> Xem thêm: Các Dạng Bài Tập Tổ Hợp Xác Suất Và Cách Giải Nhanh, Chính Xác Nhất

Mối quan hệ giữa hoán vị, chỉnh hợp, tổ hợp

Hoán vị, chỉnh hợp, tổ hợp có mối quan hệ chặt chẽ với nhau. Các em có thể thấy một chỉnh hợp chập k của n phần tử có thể được tạo thành bằng cách sau:

Bước 1: Lấy một tổ hợp chập k của n phần tử.

Bước 2: Thực hiện hoán vị k phần tử đó.

Mối quan hệ giữa hoán vị chỉnh hợp tổ hợp được cụ thể hóa qua công thức sau:

A_n^k=C_n^kP_k

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Qua bài viết này, các anh chị team Marathon Education đã cung cấp cho các em những kiến thức quan trọng liên quan đến hoán vị chỉnh hợp tổ hợp. Bằng những bài tập vận dụng có lời giải chi tiết, hy vọng các em có thể dễ dàng vận dụng để giải các bài tập tương tự. Chúc các em thành công!

CÓ THỂ BẠN QUAN TÂM