Giao Thoa Sóng Là Gì? Lý Thuyết Và Công Thức Giao Thoa Sóng

Marathon Team - 31/03/2022

Giao thoa sóng là kiến thức quan trọng trong chương trình Vật Lý 12 thường xuất hiện trong các đề thi đại học. Do đó, các em phải hiểu rõ lý thuyết và công thức để từ đó giải tốt các bài tập liên quan. Vậy giao thoa sóng là gì? Có những công thức tính toán nào? Qua bài viết này Team Marathon sẽ giúp các em nắm vững những kiến thức liên quan đến chủ đề này.

>>> Xem thêm: Lý Thuyết Lý 12: Đặc Trưng Vật Lí Của Âm

Giao thoa sóng là gì?

Giao thoa sóng là gì?
Giao thoa sóng là gì? (Nguồn: Internet)

Định nghĩa

Giao thoa sóng là sự tổng hợp của hai sóng kết hợp ở trong không gian, trong đó có những vị trí biên độ sóng bị giảm bớt hay được tăng cường.

Điều kiện

Điều kiện để có giao thoa là phải có sự kết hợp từ hai nguồn sóng có cùng tần số và có hiệu số pha không đổi theo thời gian.

>>> Xem thêm: Lý Thuyết Lý 12: Sóng Cơ Là Gì? Sự Truyền Sóng Cơ

Công thức giao thoa sóng

Ta xét giao thoa của 2 sóng phát ra từ hai nguồn kết hợp S1 và S2 cách nhau một khoảng cách l bất kỳ.

hình ảnh giao thoa sóng
  • Phương trình sóng 2 nguồn S1 và S2:
u_1=Acos(2\pi ft+\varphi_1)\\
u_2=Acos(2\pi ft+\varphi_2)
  • Phương trình sóng tại M cách 2 nguồn S1 và S2 khoảng cách d1 và d2:
\begin{aligned}
&u_{1M}=Acos\left(2\pi ft+\varphi_1-2\pi \frac{d_1}{\lambda}\right)\\
&u_{2M}=Acos\left(2\pi ft+\varphi_2-2\pi \frac{d_2}{\lambda}\right)\\
&u_M=u_{1M}+u_{2M}=2Acos\left[\pi \frac{d_2-d_1}{\lambda}-\frac{\Delta\varphi}{2} \right]cos\left[2\pi ft-\pi \frac{d_1+d_2}{\lambda}+\frac{\varphi_1+\varphi_2}{2}\right]
\end{aligned}
  • Biên độ dao động tại M
A_M=2A\left|cos\left(\pi\frac{d_1-d_2}{\lambda}+\frac{\Delta\varphi}{2}\right)\right| \text{ với }\Delta \varphi=\varphi_2-\varphi_1
  • Những điểm dao động với biên độ cực đại
tìm số điểm và đường dao động cực đại và cực tiểu
d_e-d_1=k\lambda+\frac{\Delta\varphi}{2\pi}\lambda \text{ với }k=0; \pm1; \pm2; \pm3;...
  • Những điểm dao động với biên độ cực tiểu: 
d_2-d_1=\left(k+\frac12\right)\lambda+\frac{\Delta\varphi}{2\pi}\lambda \text{ với }k=0; \pm1; \pm2; \pm3;...
  • Lưu ý:
\begin{aligned}
&\small\circ\text{Khoảng cách giữa 2 cực đại hoặc 2 cực tiểu liên tiếp là: } \frac{λ}{2}\\
&\small\circ\text{Khoảng cách gần nhất giữa 1 cực đại và 1 cực tiểu là: }\frac{λ}{4}
\end{aligned}

Hai nguồn dao động cùng pha

Khi hai nguồn sóng dao động cùng pha thì ∆φ = φ2 – φ1 = 0 hoặc ∆φ= 2kπ.

  • Phương trình giao thoa sóng tại M:
u_M=u_{1M}+u_{2M}=2Acos\left(\pi \frac{d_2-d_1}{\lambda} \right)cos\left(2\pi ft-\pi \frac{d_1+d_2}{\lambda}+\varphi\right)
  • Biên độ sóng tổng hợp:
\begin{aligned}
\small\circ\  &\small A_{M\ max} = 2A \text{ khi: Hai sóng thành phần tại M dao động cùng pha với }∆φ = 2kπ\ (k∈Z)\\
&\small \Rightarrow∆d = d_2 – d_1 = kλ\\
\small\circ\  &\small A_{M\ min} = 0 \text{ khi: Hai sóng thành phần tại M dao động ngược pha với }∆φ= (2k + 1)π\ (k ∈ Z).\\
&\small \Rightarrow ∆d = d_2 – d_1 = \left(k + \frac12\right)λ\\
\end{aligned}
  • Số điểm dao động cực đại ở trên đoạn S1S2:
d_1 – d_2 = kλ\ (k ∈ Z)

Số điểm cực đại là:

-\frac{S_1S_2}{λ} ≤ k ≤ \frac{S_1S_2}{λ} \text{ với }k=0; \pm1; \pm2; \pm3;...
  • Số điểm dao động cực tiểu trên đoạn S1S2:
d_1 – d_2 = (2k + 1)\frac{λ}{2}\ (k ∈ Z)

Số điểm cực tiểu:

-\frac{S_1S_2}{λ} - \frac12 ≤ k ≤ \frac{S_1S_2}{λ} - \frac12 \text{ với }k=0; \pm1; \pm2; \pm3;...

Như vậy khi hai nguồn dao động cùng pha, cùng biên độ A thì trung điểm I của đoạn S1S2 có biên độ cực đại (A max = 2A) và tập hợp của các điểm cực tiểu, cực đại là các đường Hypebol có S1, S2 là tiêu điểm.

Hai nguồn dao động ngược pha 

  • Phương trình giao thoa sóng tại M:
u_M=u_{1M}+u_{2M}=2Acos\left(\pi \frac{d_2-d_1}{\lambda} -\pi\right)cos\left(2\pi ft-\pi \frac{d_1+d_2}{\lambda}+\frac{\varphi_1+\varphi_2}{2}\right)
  • Biên độ sóng tổng hợp:
A_M=2A\left|cos\left(\pi\frac{d_2-d_1}{\lambda}-\pi\right)\right|
  • Điểm dao động cực đại:
d_2 – d_1 = \left(k + \frac12\right)λ\ (k∈Z)

Số điểm hoặc số đường dao động cực đại trên đoạn S1S2 (không tính hai nguồn):

-\frac{S_1S_2}{λ} - \frac12 ≤ k ≤ \frac{S_1S_2}{λ} - \frac12 \text{ với }k=0; \pm1; \pm2; \pm3;...
  • Điểm dao động cực tiểu (không dao động):
d_2 – d_1 = kl\ (k∈Z)

Số điểm hoặc số đường dao động cực tiểu trên đoạn S1S2 (không tính hai nguồn):

-\frac{S_1S_2}{λ} ≤ k ≤ \frac{S_1S_2}{λ} \text{ với }k=0; \pm1; \pm2; \pm3;...

Như vậy khi 2 nguồn dao động ở cùng biên độ A và ngược pha thì trung điểm của S1S2 có biên độ (cực tiểu): Amin = 0.

Hai nguồn dao động vuông pha 

  • Phương trình giao thoa sóng tại M:
u_M=u_{1M}+u_{2M}=2Acos\left(\pi \frac{d_2-d_1}{\lambda} -\frac{\pi}{4}\right)cos\left(2\pi ft-\pi \frac{d_1+d_2}{\lambda}+\frac{\varphi_1+\varphi_2}{2}\right)
  • Biên độ sóng tổng hợp:
A_M=2A\left|cos\left(\pi\frac{d_2-d_1}{\lambda}-\frac{\pi}{4}\right)\right|
  • Điểm dao động cực đại:
d_2 – d_1 = \left(k + \frac14\right)λ\ (k∈Z)
  • Số điểm hoặc số đường dao động cực đại ở trên đoạn S1S2:
-\frac{S_1S_2}{λ} - \frac14 ≤ k ≤ \frac{S_1S_2}{λ} - \frac14\text{ với }k=0; \pm1; \pm2; \pm3;...
  • Điểm dao động cực tiểu (không dao động):
d_2 – d_1 = \left(k + \frac34\right)λ\ (k∈Z)
  • Số điểm hoặc số đường dao động cực tiểu trên đoạn S1S2:
-\frac{S_1S_2}{λ} - \frac34 ≤ k ≤ \frac{S_1S_2}{λ} - \frac34 \text{ với }k=0; \pm1; \pm2; \pm3;...

Như vậy khi cả 2 nguồn dao động ở cùng biên độ A, và vuông pha thì trung điểm của S1S2 có biên độ là: AM = A√2.

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Trên đây là toàn bộ lý thuyết trọng tâm và công thức của giao thoa sóng trong chương trình Lý 12. Mong những kiến thức tổng hợp này sẽ giúp ích nhiều cho các em trong quá trình ôn luyện và làm bài. Chúc cho các em học tập thật hiệu quả và đạt thành tích cao trong các bài kiểm tra, bài thi sắp tới!

CÓ THỂ BẠN QUAN TÂM