Bất Đẳng Thức Là Gì? Lý Thuyết Bất Đẳng Thức Toán 10 Đầy Đủ, Chi Tiết

Vy - 19/01/2022

Bất đẳng thức có thể được coi là một kiến thức nền rất quan trọng, có liên quan hầu hết đến các dạng bài tập ở cả chương trình Toán trung học cơ sở và trung học phổ thông. Trong bài viết dưới đây, Marathon Education đã tổng hợp và chia sẻ đến các em đầy đủ và chi tiết kiến thức về khái niệm, tính chất và các dạng bất đẳng thức thường gặp trong chương trình Toán 8, Toán 9 và Toán 10.

Khái niệm cơ bản về số thực dương và số thực âm

Nếu a là số thực dương, ta kí hiệu a > 0.
Nếu a là số thực âm, ta kí hiệu a < 0.
Nếu a là số thực dương hoặc a = 0, ta nói a là số thực không âm, kí hiệu a ≥ 0.
Nếu a là số thực âm hoặc a = 0, ta nói a là số thực không dương, kí hiệu a ≤ 0.

Bất đẳng thức là gì?

Bất đẳng thức là gì?
Bất đẳng thức là gì? (Nguồn: Internet)

Bất đẳng thức là một mệnh đề xác định có các dạng sau A > B, A < B, A ≥ B, A ≤ B. Trong đó, A và B là những biểu thức có chứa số và phép toán. 

Biểu thức A sẽ được gọi là vế trái của bất đẳng thức, biểu thức B được gọi là vế phải của bất đẳng thức.

Từ định nghĩa, ta sẽ có một số hệ quả như sau:

Hệ quả

  • Trong trường hợp mệnh đề “A < B ⇒ C < D” được xác định là mệnh đề đúng thì các em có thể kết luận rằng bất đẳng thức C < D là bất đẳng thức hệ quả của bất đẳng thức A < B. 
  • Còn nếu “A < B ⇒ C < D” và “C < D ⇒ A < B” đều là mệnh đề đúng thì các em có thể nói rằng 2 bất đẳng thức A < B và C < D có giá trị tương đương. Ký hiệu là: A < B ⇔ C < D.

Các tính chất của bất đẳng thức 

Dưới đây là một số các tính chất thường gặp của bất đẳng thức:

Tính chất bắc cầu

Đầu tiên, bất đẳng thức có tính chất bắc cầu. Cụ thể, nếu ta có cùng lúc 2 biểu thức A < B và B < C thì các em có thể suy ra được A < C. 

Tính chất cộng 2 vế của bất đẳng thức với 1 số

Tính chất cộng 2 vế của bất đẳng thức với 1 số khá đơn giản. Các em chỉ cần nhớ như sau: 

A < B ⇔ A + C < B + C. 

Tính chất cộng 2 bất đẳng thức cùng chiều

Nếu dữ kiện cho 2 bất đẳng thức cùng chiều A < C và B < D, các em sẽ kết luận được A + C < B + D. 

Tính chất nhân 2 vế của bất đẳng thức với 1 số

Nếu đề bài cho A < B và C > 0 thì ta sẽ được AC < BC. Trong trường hợp A < B và C < 0, thì ta thu được AC > BC.

Tính chất nhân 2 bất đẳng thức cùng chiều

Nếu dữ kiện cung cấp 0 < A < B và 0 < C < D thì tính chất nhân 2 bất đẳng thức cùng chiều ta sẽ thu được kết quả AC < BD.

Tính chất nâng 2 vế của bất đẳng thức lên một lũy thừa

Khi A, B > 0, với n ∈ N∗ thì ta sẽ có:

A < B ⇔ A^n< B^n

Tính chất khai căn 2 vế của bất đẳng thức

Khi A, B > 0, với n ∈ N∗ thì ta sẽ có:

A < B ⇔ \sqrt[n]{A} < \sqrt[n]{B}

Bất đẳng thức Côsi

Bất đẳng thức Côsi còn được gọi với cái tên khác là bất đẳng thức trung bình cộng và trung bình nhân hay bất đẳng thức AM – GM. Cụ thể:

\begin{aligned}
&\footnotesize\bullet\text{Ta đặt } \frac{a+b}{2} \ \text{là trung bình cộng của 2 số a, b. Theo đó, các em sẽ có tổng quát}\\
&\footnotesize\text{trung bình cộng của n số } a_1, a_2,...a_n \ \text{sẽ là } \frac{a_1 + a_2 +...+ a_n​}{n}.\\
&\footnotesize\bullet\text{Trung bình nhân của 2 số không âm a ≥ 0, b ≥ 0 sẽ là } \sqrt{ab}. \text{ Vậy, trung bình nhân}\\
&\footnotesize\text{của n số không âm } a_1 ≥0, a_2≥0,..., a_n≥0 \text{ sẽ là } \sqrt[n]{a_1a_2...a_n}.
\end{aligned}

Bất đẳng thức Côsi cho 2 số a và b không âm

\sqrt{ab}≤ \frac{a+b}{2}\ \ \ (∀ a, b ≥ 0)

Dấu “=” chỉ xảy ra khi a = b. 

Theo đó, ta cũng có bất đẳng thức Côsi cho 3 số a, b và c không âm:

\sqrt[3]{abc}≤ \frac{a+b+c}{3}\ \ \ (∀ a, b, c ≥ 0)
\sqrt[n]{a_1a_2...a_n}≤ \frac{a_1+a_2+...+a_n}{n}\ \ \ (∀ a_1,a_2,...a_n ≥ 0)

Từ công thức của bất đẳng thức Côsi, ta sẽ thu được một số hệ quả như sau:

  • Hệ quả 1: Khi hai số dương bất kỳ có tổng không đổi thì tích của chúng sẽ lớn nhất nếu giá trị hai số đó bằng nhau.
  • Hệ số 2: Trong trường hợp hai số dương xác định có tích không đổi thì tổng của chúng sẽ nhỏ nhất khi giá trị hai số này bằng nhau. 

Bất đẳng thức chứa dấu giá trị tuyệt đối

Dưới đây là một số bất đẳng thức chứa dấu giá trị tuyệt đối các em có thể áp dụng để giải nhiều dạng toán bất đẳng thức nâng cao:

|a| - |b| ≤ |a+b| ≤ |a| + |b|, ∀ a, b ∈ R. \ Dấu \ “=” chỉ \ xảy \ ra \ khi \ ab ≥ 0
|x| ≤ a \Leftrightarrow -a ≤ x ≤ a \ (∀a > 0)
|x|\geq a\Leftrightarrow |x|\geq a \ hoặc\ |x| \leq -a \ (∀ a > 0)

Một số bất đẳng thức đáng nhớ

Bất đẳng thức tam giác

Nếu a, b, c là 3 cạnh trong tam giác, ta sẽ có các bất đẳng thức tam giác sau:

  • a > 0, b > 0, c > 0
  • |b – c| < a < b + c
  • |c – a| < b < c + a
  • |a – b| < c < a + b
  • a > b > c ⇔ A > B > C (với A, B, C lần lượt là góc đối diện cạnh a, cạnh b, cạnh c)

Một số bất đẳng thức phụ thường gặp

Một số bất đẳng thức phụ thường gặp

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Bất đẳng thức là phần kiến thức cần nắm thật vững nếu các em muốn “xử đẹp” môn Toán Đại số THPT. Qua bài viết, mong rằng các em sẽ nắm vững những lý thuyết về bất đẳng thức để áp dụng giải bài tập nhanh chóng và hiệu quả. Chúc các em luôn học tập tốt và đạt điểm cao!

CÓ THỂ BẠN QUAN TÂM