Lý Thuyết Về Tích Phân Và Phương Pháp Tính Tích Phân Cơ Bản

Vy - 18/02/2022

Tích phân là một trong những nội dung quan trọng của chương trình Toán học 12. Nắm chắc lý thuyết, phương pháp tính tích phân cơ bản sẽ giúp các em giải nhanh và chính xác các bài tập liên quan và đạt điểm cao trong các kỳ thi. Vì thế, trong bài viết này, Marathon Education sẽ giúp các em tìm hiểu chi tiết tích phân là gì và những phương pháp tính tích phân cơ bản thường gặp.

Định nghĩa tích phân

Tích phân là gì?
Tích phân là gì? (Nguồn: Internet)

Để học tốt tích phân, trước tiên các em cần nắm vững lý thuyết tích phân là gì. 

Xét hàm số f(x) xác định và liên tục trên đoạn [a;b]. Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b] thì F(b) – F(a) chính là tích phân từ a đến b của hàm số f(x), hay còn gọi là tích phân được xác định trên đoạn [a;b]. Cụ thể:

\intop^b_a f(x)dx=F(x)|^b_a=F(b)-F(a)
chương trình học thử

Tính chất của tích phân

Để giải các bài toán tích phân, các em cần nắm được những tính chất cơ bản sau của tích phân:

các tính chất của tính phân

Phương pháp tính tích phân

Khi giải các bài tập tích phân, các em có thể áp dụng nhiều phương pháp khác nhau. Trong đó, 2 phương pháp cơ bản được áp dụng nhiều nhất là đổi biến số và tích phân từng phần.

Phương pháp đổi biến số

Cho hàm số f(x) được xác định và có đạo hàm liên tục trên đoạn [a;b]. Các em có thể sử dụng phương pháp đổi biến số để tính tích phân. Công thức đổi biến số cụ thể:

\intop^b_af(u)u'(x)dx=\intop^{u(b)}_{u(a)}f(u)du

Sau đây là các dạng tích phân và cách đổi biến số thường gặp mà các anh chị Marathon đã tổng hợp được. Các em hãy tham khảo và áp dụng để giải bài tập:

Tổng hợp các dạng tích phân và cách đổi biến

Phương pháp tích phân từng phần

Các em nên áp dụng phương pháp tích phân từng phần để giải nhanh chóng và chính xác những bài tập mà hàm số đã cho thuộc dạng:

  • Hàm đa thức – hàm mũ
  • Hàm đa thức – hàm lượng giác
  • Hàm mũ – hàm lượng giác
  • Hàm logarit – hàm đa thức

Công thức tích phân từng phần :

\intop^b_au(x)v'(x)dx=u(x)v(x)|^b_a-\intop^b_au'(x)v(x)dx

Các dạng bài tập tích phân cơ bản

Dạng 1: Hàm logarit

Ví dụ: Các em hãy tính tích phân của hàm số:

I=\intop^1_0e^x(2e^x+1)^3dx

Bài giải:

Ta có:

\begin{aligned}
I&=\intop^1_0e^x(2e^x+1)^3dx\\
&=\frac{1}{2}\intop^1_0(2e^x+1)^3d(2e^x+1)\\
&=\left.\frac{1}{2}.\frac{(2e^x+1)^4}{4}\right|^1_0\\
&=\frac{1}{2}\left[\frac{(2e+1)^4}{4}-\frac{81}{4} \right]\\
&=\frac{(2e+1)^4}{8}-\frac{81}{8}
\end{aligned}

Dạng 2: Hàm phân thức

Ví dụ: Các em hãy tính tích phân của hàm số:

I=\intop^4_3\frac{x+1}{x-2}dx

Bài giải:

Ta có:

\begin{aligned}
I&=\intop^4_3\frac{x+1}{x-2}dx\\
&=\intop^4_3\left(1+\frac{3}{x-2}\right)dx\\
&=[x+3ln(x-2)|^4_3\\
&=(4+3ln2)-(3+ln1)\\
&=1+3ln2
\end{aligned}

Dạng 3: Hàm căn thức

Ví dụ: Các em hãy tính tích phân của hàm số:

I=\intop^4_0\sqrt{2x+1}dx

Bài giải:

Ta có:

\begin{aligned}
I&=\intop^4_0\sqrt{2x+1}dx\\
&=\frac{1}{2}\intop^4_0\sqrt{2x+1}d(2x+1)\\
&=\left.\frac{1}{2}.\frac{2}{3}(2x+1)\sqrt{2x+1}\right|^4_0\\
&=9-\frac{1}{3}=\frac{26}{3}
\end{aligned}

Dạng 4: Hàm đa thức

Ví dụ: Các em hãy tính tích phân của hàm số:

I=\intop^1_0(3x^2+2x-1)dx

Bài giải:

Ta có:

\begin{aligned}
I&=\intop^1_0(3x^2+2x-1)dx\\
&=\intop^1_03x^2dx+\intop^1_02xdx-\intop^1_0dx\\
&=(x^3+x^2-x)|^1_0=1
\end{aligned}

Dạng 5: Hàm lượng giác

Ví dụ: Tính tích phân của hàm số:

I=\intop^{\frac{\pi}{2}}_0sin3x.cosxdx

Bài giải: 

Ta có:

\begin{aligned}
I&=\intop^{\frac{\pi}{2}}_0sin3x.cosxdx\\
&=\frac{1}{2}\intop^{\frac{\pi}{2}}_0(sin4x+sin2x)dx\\
&=\left.\frac{1}{2}\left[-\frac{1}{4}cos4x-\frac{1}{2}cos2x\right]\right|^{\frac{\pi}{2}}_0\\
&=\frac{1}{2}\left[-\frac{1}{4}(cos2\pi-cos0)-\frac{1}{2}(cos\pi-cos0)\right]\\
&=\frac{1}{2}\left[-\frac{1}{4}(1-1)-\frac{1}{2}(-1-1)\right]=\frac{1}{2}
\end{aligned}

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 6 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

  • Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.
  • Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.
  • Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.
  • Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.
  • Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

 

 

 

Qua bài viết này, Team Marathon Education đã giúp các em hiểu thêm định nghĩa tích phân. Bên cạnh đó, các em biết được những phương pháp tính tích phân cũng như những dạng bài tập cơ bản. Hy vọng, những kiến thức này sẽ giúp ích cho các em trong quá trình học và ôn tập cho các kỳ thi quan trọng. 

Hãy liên hệ ngay với Marathon để được tư vấn nếu các em có nhu cầu học online trực tuyến nâng cao kiến thức nhé! Marathon Education chúc các em được điểm cao trong các bài kiểm tra và kỳ thi sắp tới!

CÓ THỂ BẠN QUAN TÂM