Cách Tính Đạo Hàm Cos2x Và Bài Tập Vận Dụng Có Đáp Án

Marathon Team - 22/02/2022

Trong bài viết này, Marathon Education sẽ chia sẻ đến các em lý thuyết về đạo hàm lượng giác cùng với cách tính đạo hàm cos2x một cách nhanh chóng và chính xác. Nội dung bài viết đã được Marathon Education biên soạn đầy đủ và chính xác để hỗ trợ các em học tốt hơn. Để hiểu rõ và nắm vững công thức đạo hàm cos2x, các em hãy đọc kỹ bài viết và vận dụng lý thuyết làm bài tập nhiều lần cho thuần thục.

>>> Xem thêm: Đạo Hàm Là Gì? Các Công Thức Tính Đạo Hàm Thường Gặp

Đạo hàm của hàm số lượng giác

  • Đạo hàm của một hàm số mô tả sự biến thiên của hàm số tại một điểm nào đó.
  • Đạo hàm của một hàm số lượng giác là phương pháp toán học tìm tốc độ biến thiên của hàm số lượng giác theo sự biến thiên của biến số.
  • Các hàm số lượng giác thường gặp bao gồm sin(x), cos(x), tan(x) và cotg(x):
\begin{aligned}
&\footnotesize \circ \text{Hàm số y = sinx có đạo hàm }\forall x\in\R \text{ và }(sinx)'=cosx.\\
&\footnotesize \circ \text{Hàm số y = cosx có đạo hàm }\forall x\in\R \text{ và }(cosx)'=-sinx.\\
&\footnotesize \circ \text{Hàm số y = tanx có đạo hàm }\forall x\not=\frac{\pi}{2}+k\pi,\ k\in \R \text{ và }(tanx)'=\frac{1}{cos^2x}.\\
&\footnotesize\circ \text{Hàm số y = cotx có đạo hàm }\forall x\not=k\pi,\ k\in \R \text{ và }(cotx)'=-\frac{1}{sin^2x}.\\
\end{aligned}

Bảng tổng hợp đạo hàm của hàm số lượng giác cơ bản và hàm số lượng giác ngược

Đầu tiên, các em hãy tham khảo và học thuộc bảng tổng hợp hàm số lượng giác cơ bản và hàm số lượng giác ngược dưới đây:

công thức tính đạo hàm cos2x và đạo hàm lượng giác cơ bản
công thức tính đạo hàm hàm số lượng giác ngược và đạo hàm cos2x

Đạo hàm của y = cosx

Từ lý thuyết về đạo hàm lượng giác, các em có thể kết luận:

Hàm số y = cosx có đạo hàm x R và (cosx)’= – sinx.

Cách tính đạo hàm cos2x

Các em thực hiện tìm đạo hàm cos2x theo hướng dẫn:

Ta tính đạo hàm y = cos2x bằng cách áp dụng công thức (cosu)’ = – u’.sinu.

Ta có: y’ = (cos2x)’ = – (2x)’.sin2x = -2sin2x

>>> Xem thêm: Cách Tìm Đạo Hàm Sin2x. Bài Tập Vận Dụng Có Đáp Án

Bài tập vận dụng về đạo hàm cos2x

Các em cùng luyện tập các bài tập sau đây để hiểu rõ và nhớ lâu hơn công thức đạo hàm cos2x. Mỗi dạng bài tập dưới sẽ có cách thực hiện khác nhau, khi áp dụng lý thuyết tuỳ vào dạng bài tập mà các em linh hoạt vận dụng các kiến thức để giải bài cho chính xác.

Bài tập 1:

\text{Tính đạo hàm của hàm số: }y = tan⁡(2x+1) - xcos2x.

Hướng dẫn:

\begin{aligned}
y'&=\frac{(2x+1)'}{cos^2(2x+1)}-[x'.cos2x+x.(cos2x)']\\
&=\frac{2}{cos^2(2x+1)}-cos2x-2xsin2x
\end{aligned}

Bài tập 2:

\text{Cho hàm số }f(x) = cos2x.\text{ Tính giá trị của }f'(\frac{π}{6}).

Hướng dẫn:

\text{Các em tính đạo hàm của }f(x) = cos2x \text{ sau đó thế giá trị }x = \frac{π}{6} \text{ vào công thức }f’(x).

Ta có:

\begin{aligned}
&f'(x)=(cos2x)'=(2x)'(-sin2x)=-2sin2x\\
&f'\left(\frac{\pi}{6}\right)=-2sin\frac{2\pi}{6}=-2sin\frac{\pi}{3}=-\sqrt3
\end{aligned}

Bài tập 3: Tìm đạo hàm cấp hai của hàm số y = cos2x.

Hướng dẫn:

y’ = (cos2x)’= -2sin2x

y’’ = (-2.sin2x)’ = (-2)’.sin2x + (-2).(sin2x)’= -2.(2x)’.cos2x = -4cos2x

Bài tập 4: Tìm đạo hàm của hàm số y = cos22x

Hướng dẫn:

y’ = (cos22x)’ = 2.(cos2x)’.cos2x = -4.sin2x.cos2x = -2sin4x

Bài tập 5:

Tính \ đạo \ hàm \ của \ hàm \ số \ y =\frac{sin2x+cos2x}{2sin2x - cos2x}

Hướng dẫn:

\begin{aligned}
y'&=\frac{(sin2x+cos2x)'.(2sin2x - cos2x)-(2sin2x - cos2x)'.(sin2x+cos2x)}{(2sin2x - cos2x)^2}
\\
&=\frac{(cos2x-sin2x).(2sin2x - cos2x)-(4cos2x+2sin2x).(sin2x+cos2x)}{(2sin2x - cos2x)^2}
\\
&=\frac{-6cos^22x-6sin^22x}{(2sin2x - cos2x)^2}
\\
&=\frac{-6}{(2sin2x - cos2x)^2}
\end{aligned}

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Trên đây là toàn bộ nội dung liên quan đến cách tính và công thức đạo hàm cos2x. Với phần lý thuyết và bài tập vận dụng, Marathon Education hy vọng các em hiểu bài và làm bài tập trên lớp và trong bài thi liên quan đến đạo hàm cos2x thật tốt. Các em có thể tham khảo thêm các nội dung bổ ích khác của môn Toán – Lý – Hoá tại website Marathon Education. Chúc các em học tập tiến bộ mỗi ngày!

CÓ THỂ BẠN QUAN TÂM