Cách Tính Nguyên Hàm Tanx Và Bài Tập Áp Dụng

Vy - 23/02/2022

Nguyên hàm lượng giác là một chủ đề quan trọng trong Toán Giải tích lớp 12. Các hàm lượng giác cơ bản sẽ có công thức tính nguyên hàm cụ thể, với một số hàm hợp phức tạp cần phải sử dụng phương pháp biến đổi thì các em mới có thể áp dụng công thức vào giải bài. Qua bài viết dưới đây, Marathon Education sẽ chia sẻ đến các em cách tính nguyên hàm tanx và phương pháp giải một số các bài tập áp dụng, giúp các em củng cố kiến thức này một cách hiệu quả hơn.

>>> Xem thêm: Toán 12 Nguyên Hàm – Lý Thuyết Và Một Số Bài Tập Ví Dụ

>>> Xem thêm: Các Dạng Toán Tích Phân Hàm Ẩn Và Phương Pháp Giải Chi Tiết

>>> Xem thêm: Dạng Bài Tập Và Cách Giải Bất Phương Trình Toán Lớp 10

Công thức tính nguyên hàm của hàm số lượng giác cơ bản

Để tính nguyên hàm tanx, các em cần ghi nhớ bảng công thức nguyên hàm của hàm số lượng giác cơ bản dưới đây:

bảng tổng hợp công thức nguyên hàm lượng giác và nguyên hàm tanx cơ bản

Tính nguyên hàm tanx

Hàm tanx sẽ không có công thức tính nguyên hàm cụ thể. Dựa theo bảng công thức nguyên hàm cơ bản bên trên chúng ta sẽ biến đổi để tính nguyên hàm tanx như sau:

\int tanxdx=\int \frac{sinx}{cosx}dx=-\int\frac{1}{cosx}d(cosx)=-ln|cosx|+C

Cách giải bài tập nguyên hàm tanx

Đối với dạng bài tập nguyên hàm tanx, các em phải biến đổi đưa về dạng nguyên hàm lượng giác cơ bản. Sau đó, các em sẽ áp dụng công thức sẵn có để tìm ra kết quả. Ngoài ra, các em có thể áp dụng thêm 2 phương pháp biến đổi hàm hợp nâng cao dưới đây để xử lý các dạng bài phức tạp:

Dạng 1: Tính nguyên hàm tanx bằng phương pháp đổi biến t = u(x)

  • Bước 1: Đặt t = u(x)
  • Bước 2: Tính vi phân 2 vế dt = u'(x)dx.
  • Bước 3: Biến đổi hàm số f(x)dx = g(t)dt.
  • Bước 4: Tính ∫f(x)dx = ∫g(t)dt = G(t) + C = G(u(x)) + C.

Dạng 2: Tính nguyên hàm tanx bằng phương pháp đổi biến x = u(t)

  • Bước 1: Đặt x = u(t)
  • Bước 2: Tính vi phân 2 vế dx = u'(t)dt.
  • Bước 3: Biến đổi hàm số f(x)dx = f(u(t)).u'(t).dt = g(t)dt
  • Bước 4: Tính ∫f(x)dx = ∫g(t)dt = G(t) + C
đăng ký học thử

Bài tập áp dụng

Bài tập 1: Tìm nguyên hàm của hàm số

f(x)=\frac{1}{tanx}

Cách giải: Đây là dạng bài tập biến đổi cơ bản để áp dụng công thức nguyên hàm lượng giác cơ bản.

\begin{aligned}
&f(x)=\frac{1}{tanx}=cotx\\
&\int f(x)=\int cotxdx=\int \frac{cosx}{sinx}dx=\int\frac{1}{sinx}d(sinx)=ln|sinx|+C
\end{aligned}

Như vậy, nguyên hàm của hàm số f(x) sẽ là ln|sinx| + C

Bài tập 2: Tìm nguyên hàm của hàm số:

f(x) = tan^3x

Cách giải:

Ta tiến hành biến đổi và tính toán như sau:

\begin{aligned}
\int tan^3xdx&=\int \frac{sin^3x}{cos^3x}dx\\
&=-\int \frac{sin^2xd(cosx)}{cos^3x}\\
&=\int \frac{(cos^2x-1)^2d(cosx)}{cos^3x}\\
&=\int\frac{d(cosx)}{cosx}-\int \frac{d(cosx)}{cos^3x}\\
&=ln|cosx|+\frac{1}{2cos^2x}+C\\
&=ln|cosx|+\frac{tan^2x}{2}+C
\end{aligned}

Bài tập 3: Tìm nguyên hàm của hàm số:

f(x)=tan^5x

Cách giải:

Hàm số này được giải theo cách áp dụng phương pháp nâng cao mà Marathon Education đã chia sẻ.

\begin{aligned}
&\text{Đặt: }tanx=t\Rightarrow\frac{dx}{cos^2x}=dt\\
&\Rightarrow(tan^2x+1)dx=dt\Rightarrow dx=\frac{dt}{t^2+1}\\
&\text{Khi đó: }\\
I&=\int t^5\frac{dt}{t^2+1}\\
&=\int\left(t^3-t+\frac{t}{t^2+1}\right)dt\\
&=\int t^3dt-\int tdt+\int\frac{t}{t^2+1}dt\\
&=\frac{1}{4}t^4-\frac{1}{2}t^2+\frac{1}{2}\int\frac{d(t^2+1)}{t^2+1}\\
&=\frac{1}{4}t^4-\frac{1}{2}t^2+\frac{1}{2}ln|t^2+1|+C\\
&=\frac{1}{4}tan^4x-\frac{1}{2}tan^2x+\frac{1}{2}ln|tan^2x+1|+C\\
&=\frac{1}{4}tan^4x-\frac{1}{2}tan^2x+\frac{1}{2}ln\left|\frac{1}{cos^2x}\right|+C\\
&=\frac{1}{4}tan^4x-\frac{1}{2}tan^2x-ln|cosx|+C
\end{aligned}

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

 

Các công thức nguyên hàm lượng giác thực sự không quá khó nếu như các em chăm chỉ luyện tập. Hy vọng với những kiến thức về nguyên hàm tanx và các bài tập vận dụng mà Marathon Education chia sẻ trên đây có thể giúp các em nắm vững kiến thức này đạt được thành tích cao hơn trong những bài kiểm tra toán sắp tới. Các em đừng quên đăng ký học livestream Marathon Education ngay hôm nay để được nhận ưu đãi và trải nghiệm lớp học thú vị. Chúc các em học tập hiệu quả và bứt phá điểm số thành công!

CÓ THỂ BẠN QUAN TÂM