Bất Đẳng Thức Bunhiacopxki Là Gì? Công Thức Và Cách Chứng Minh

Marathon Team - 21/02/2022

Bất đẳng thức Bunhiacopxki là một trong những nhánh quan trọng của bất đẳng thức Cauchy-Schwarz. Bất đẳng thức này này thường được sử dụng nhiều trong các bài toán chứng minh bất đẳng thức nâng cao. Các em hãy ùng Marathon Education tìm hiểu về công thức tính, cách chứng minh và bài tập bất đẳng thức Bunhiacopxki qua bài viết dưới đây.

Bất đẳng thức Bunhiacopxki là gì?

Bất đẳng thức Bunhiacopxki là gì?
Bất đẳng thức Bunhiacopxki là gì? (Nguồn: Internet)

Bất đẳng thức Bunhiacopxki có tên gọi ban đầu bất đẳng thức Cauchy – Bunhiacopxki – Schwarz sau đó rút gọn lại gọi theo tên của nhà toán học người Nga Bunhiacopxki. Bất đẳng thức này do 3 nhà toán học nghiên cứu và phát triển. Trong lĩnh vực toán học, bất đẳng thức này được ứng dụng khá nhiều để giải các bài toán chứng minh bất đẳng thức và tìm cực trị.

Công thức bất đẳng thức Bunhiacopxki

Bất đẳng thức Bunhiacopxki dạng cơ bản:

\begin{aligned}
&(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2\\
&\text{Dấu "=” xảy ra khi }ac = bd
\end{aligned}

Bất đẳng thức Bunhiacopxki dạng tổng quát:

Với hai bộ số (a1, a2,…,an) và (b1, b2,…,bn), ta có:

\begin{aligned}
&(a_1^2 + a_2^2 + … + a_n^2).(b_1^2 + b_2^2 + … + b_n^2) ≥ (a_1b_1 + a_2b_2 + … + a_nb_n)^2\\
&\text{Dấu “=” xảy ra khi } \frac{a_1}{b_1} = \frac{a_2}{b_2} =... = \frac{a_n}{b_n}\\
\end{aligned}

Nếu một số nào đó (i = 1, 2, 3,…, n) bằng 0 thì đẳng thức tương ứng bằng 0.

Ngoài ra:

Bất đẳng thức Bunhiacopxki dạng tổng quát

Hệ quả của bất đẳng thức Bunhiacopxki

Hệ quả 1

\small\text{Nếu }a_1x_1 +... + a_nx_n = C \text{ thì } min(x_1^2+...+x_n^2)=\frac{C}{a_1^2+...+a_n^2} \text{đạt được khi }\frac{x_1}{a_1} =... = \frac{x_n}{a_n}

Hệ quả 2

\begin{aligned}
&\small \text{Nếu } x_1^2 +...+ x_n^2 = C^2 \text{ (không đổi) thì:}\\
&\small \bull Max(a_1x_1+...+a_nx_n)=C.\sqrt{a_1^2+...+a_n^2} \text{ đạt được khi } a_1x_1 =... = a_nx_n\geq0.\\
&\small \bull Min(a_1x_1+...+a_nx_n)=-C.\sqrt{a_1^2+...+a_n^2} \text{ và dấu "=" xảy ra khi } a_1x_1 =... = a_nx_n\leq0.\\
\end{aligned}

Chứng minh bất đẳng thức Bunhiacopxki

Các em có thể chứng minh bất đẳng thức Bunhiacopxki như sau:

Ta có:

\begin{aligned}
&(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2\\
&\Leftrightarrow(ac)^2 + (ad)^2 + (bc)^2 + (bd)^2 ≥ (ac)^2 + 2abcd + (bd)^2\\
&\Leftrightarrow (ad)^2 + (bc)^2 ≥ 2abcd\\
&\Leftrightarrow (ad)^2 - 2abcd + (bc)^2 ≥0\\
&\Leftrightarrow (ad - bc)^2 ≥ 0\text{ (luôn đúng)}
\end{aligned}

Bài tập bất đẳng thức Bunhiacopxki lớp 9

Bài tập 1: Cho các số a, b, c là các số thực dương bất kỳ. Chứng minh rằng:

\sqrt{\frac{a + b}{a + b + c}}+\sqrt{\frac{b + c}{a + b + c}}+\sqrt{\frac{c + a}{a + b + c}}\leq6 

Hướng dẫn:

Áp dụng bất đẳng thức bunhiacopxki cho phân thức, ta có:

\begin{aligned}
&\footnotesize \sqrt{\frac{a + b}{a + b + c}}+\sqrt{\frac{b + c}{a + b + c}}+\sqrt{\frac{c + a}{a + b + c}}\\
&\footnotesize  \Leftrightarrow 1.\sqrt{\frac{a + b}{a + b + c}}+1.\sqrt{\frac{b + c}{a + b + c}}+1.\sqrt{\frac{c + a}{a + b + c}}\leq\sqrt{(1+1+1)\left(\frac{a + b}{a + b + c}+\frac{b + c}{a + b + c}+\frac{c + a}{a + b + c}\right)}\\
&\footnotesize  \Leftrightarrow \sqrt{\frac{a + b}{a + b + c}}+\sqrt{\frac{b + c}{a + b + c}}+\sqrt{\frac{c + a}{a + b + c}}\leq \sqrt{3.\left[\frac{2(a + b+c)}{a + b + c}\right]}\\
&\footnotesize  \Leftrightarrow \sqrt{\frac{a + b}{a + b + c}}+\sqrt{\frac{b + c}{a + b + c}}+\sqrt{\frac{c + a}{a + b + c}}\leq \sqrt{3.2}=\sqrt6 \text{ (điều phải chứng minh)}\\
&\footnotesize\text{Dấu “=” xảy ra khi và chỉ khi các giá trị a = b = c}
\end{aligned}\\

Bài tập 2: Tìm giá trị lớn nhất (max) của biểu thức sau:

P=\sqrt{x-2}+\sqrt{4-x}

Hướng dẫn:

\begin{aligned}
&\footnotesize P=\sqrt{x-2}+\sqrt{4-x}\\
&\footnotesize \text{Điều kiện: }2 ≤ x ≤ 4\\
&\footnotesize \text{Áp dụng bất đẳng thức bunhiacopxki, ta có:}\\
&\footnotesize (1.\sqrt{x -2} + 1.\sqrt{4 -x})^2  ≤ (1^2  + 1^2).(x - 2 + 4 - x) = 2^2 = 4\\
&\footnotesize⟹ P^2 ≤ 4\\
&\footnotesize ⟺ -2 ≤ P ≤ 2\\
&\footnotesize \text{P đạt giá trị lớn nhất khi }P = 2 ⟺ \frac{1}{\sqrt{x -2}} = \frac{1}{\sqrt{4 -x}} ⟺ x - 2 = 4 - x ⟺ x = 3 (TMĐK)\\
&\footnotesize \text{Vậy }P_{max} = 2 ⟺ x = 3
\end{aligned}

Bài tập 3: Cho các số a, b, c là các số thực dương tùy ý. Chứng minh rằng:

\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a+b+c}{2}

Hướng dẫn:

Áp dụng bất đẳng thức bunhiacopxki.

Ta được:

\begin{aligned}
&\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{(a+b)+(b+c)+(c+a)}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}\\
&\text{Đẳng thức xảy ra khi và chỉ khi các số a = b = c}
\end{aligned}

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

Bất đẳng thức Bunhiacopxki thường được áp dụng nhiều trong các bài tập chứng minh bất đẳng thức và tìm cực trị. Do đó, các em cần phải nắm vững khái niệm, công thức tính, cách chứng minh bất đẳng thức Bunhiacopxki và làm nhiều dạng bài tập khác nhau để nâng cao kỹ năng giải toán của bản thân. Chúc các em luôn đạt điểm cao trong mọi kỳ thi và học tập tốt hơn mỗi ngày!

CÓ THỂ BẠN QUAN TÂM