Tích Phân Suy Rộng Là Gì? Cách Tính Tích Phân Suy Rộng

Vy - 25/02/2022

Tích phân suy rộng là một trong những kiến thức Toán nâng cao trong của chương trình Toán 12. Đây là lý thuyết quan trọng đối với những học sinh có định hướng theo chuyên ngành Toán khi lên đại học. Để hiểu hơn về những khái niệm và cách tính tích phân suy rộng, các em hãy theo dõi bài viết tổng hợp được biên soạn từ Marathon Education dưới đây.

>>> Xem thêm:

Định nghĩa tích phân suy rộng

tích phân suy rộng là gì
Tích phân suy rộng là gì? (Nguồn: Internet)

Tích phân suy rộng là giới hạn của một tích phân xác định khi cho cận tích phân tiến dần tới vô cùng. Tích phân suy rộng bao gồm 2 loại: tích phân với cận vô hạn (gọi là tích phân suy rộng loại 1) và tích phân của hàm số không bị chặn (tích phân suy rộng loại 2).

Tính chất của tích phân suy rộng

1. f khả tích trên [a; b] ∀b ≥ a. Khi đó, ∀α ≥ a.

\footnotesize \intop_a^{+\infin}f(x)dx \text{ và } \intop_α^{+\infin}f(x)dx \text{ cùng hội tụ hoặc cùng phân kỳ (Cùng bản chất)}

2. f khả tích trên [a; b], ∀b ≥ a. Khi đó, ∀α ≠ 0.

\footnotesize \intop_a^{+\infin}f(x)dx \text{ và } \intop_a^{+\infin}αf(x)dx \text{ cùng hội tụ hoặc cùng phân kỳ (Cùng bản chất)}\\

3. f, g khả tích trên [a; b], ∀b ≥ a.

\begin{aligned}
&\footnotesize \intop_a^{+\infin}f(x)dx\text{ và }\intop_a^{+\infin}g(x)f(x)dx \text{ hội tụ}\Rightarrow \intop_a^{+\infin}(f+g)dx  \text{ hội tụ}\\
&\footnotesize \intop_a^{+\infin}f(x)dx \text{ hội tụ và }\intop_a^{+\infin}g(x)f(x)dx \text{ phân kỳ} \Rightarrow \intop_a^{+\infin}(f+g)dx \text{ phân kỳ} 
\end{aligned}

Điều kiện để tích phân suy rộng hội tụ

Mỗi loại tích phân suy rộng sẽ có những điều kiện hội tụ riêng, cụ thể như sau:

Định lý so sánh 1

Điều kiện hội tụ của tích phân suy rộng loại 1 được thể hiện như sau:

Định nghĩa:

Giả sử f(x) xác định trên tập [a;+∞) và khả tích trên mọi đoạn hữu hạn a ≤ x ≤ b < +∞

  • Nếu tồn tại giới hạn (có thể là hữu hạn hoặc vô cùng) thì giới hạn này gọi là tích phân suy rộng của f(x) trên [a;+∞).
\lim\limits_{b\to +\infin}\intop_a^bf(x)dx:=\intop_a^{+\infin}f(x)dx
\begin{aligned}
&\footnotesize\bull \text{Nếu giới hạn này là hữu hạn, ta suy ra} \textbf{ tích phân suy rộng}\intop_a^{+\infin}f(x)dx \text{ là hội tụ.}\\
&\footnotesize\bull \text{Nếu giới hạn này là vô cùng hoặc không tồn tại, ta suy ra}\textbf{ tích phân suy rộng}\intop_a^{+\infin}f(x)dx \text{ là phân kỳ.}
\end{aligned}

Tương tự, định nghĩa tích phân suy rộng của hàm số f(x) không bị chặn trên khoảng (a,b] và (a, b) sẽ lần lượt nhận x = a và x = b làm điểm bất thường. 

\begin{aligned}
&\intop_a^bf(x)dx=\lim\limits_{t\to a^+}\intop^b_tf(x)dx \text{ và }\intop_a^bf(x)dx=\lim\limits_{t\to a^+,\ t'\to b^-}\intop_t^{t'}f(x)dx

\end{aligned}

Đối với tích phân có hai điểm bất thường x = a, x = b thì ta có thể viết như sau khi hai trong ba tích phân nói trên hội tụ:

\intop_a^bf(x)dx=\intop_a^cf(x)dx+\intop_c^bf(x)dx

Định lý (tiêu chuẩn so sánh):

Cho hai hàm số g(x) và f(x) không âm và khả tích trên [a,t] với mọi t>a. Giả sử tồn tại số M sao cho f(x) ≤ g(x) với mọi x > M. Khi đó:

\begin{aligned}
&\footnotesize \text{Nếu }\intop_a^{-\infin}g(x)dx \text{ hội tụ thì }\intop_a^{+\infin}f(x)\text{ hội tụ.}\\
&\footnotesize \text{Nếu }\intop_a^{+\infin}f(x)dx \text{ phân kỳ thì }\intop_a^{-\infin}g(x)\text{ phân kỳ.}
\end{aligned}

Hệ quả: 

Cho f(x) và g(x) là hai hàm số dương khả tích trên [a,t] với mọi t>a. Giả sử:

\lim\limits_{x\to +\infin}\frac{f(x)}{g(x)}=k
\begin{aligned}
&\footnotesize \bull \text{Nếu } 0< k < +\infin \text{ thì }\intop_a^{+\infin}f(x)dx \text{ và} \intop_a^{-\infin}g(x)dx \text{ sẽ cùng hội tụ hoặc cùng phân kỳ.}\\
&\footnotesize \bull \text{Nếu } k=0 \text{ thì tồn tại M sao cho }f(x) \le c.g(x), \forall x \ge M \text{ (giống với định lý)}.\\
&\footnotesize \bull \text{Nếu } k=+\infin \text{ thì tồn tại M sao cho } f(x) \ge c.g(x), \forall x \ge M \text{ (ngược với định lý)}.
\end{aligned}

Định lý so sánh 2

Điều kiện hội tụ của tích phân suy rộng loại 2:

Định nghĩa:

Cho hàm số f(x) xác định trong khoảng [a,b] và khả tích trên [a,t]. Giả sử hàm số f(x) là hàm số xác định trên khoảng [a,b] và khả tích trên [a,t] với mọi a < t < b, ta có:

\begin{aligned}
&\footnotesize \bull \text{Nếu tồn tại } \lim\limits_{t\to b^-}\intop_a^tf(x)dx \text{ thì giới hạn đó được gọi là}\textbf{ tích phân suy rộng } \text{của hàm số }f(x) \text{ trong khoảng }\\
&\footnotesize \text{[a, b] và có ký hiệu là}\intop_a^bf(x)dx.\\
&\footnotesize \bull \text{Khi đó, ta cũng nói rằng tích phân hội tụ: }\intop_a^bf(x)dx:=\lim\limits_{t\to b^-}\intop_a^tf(x)dx.\\
&\footnotesize \bull \text{Nếu }f(a)=+\infin: \intop_a^bf(x)dx:=\lim\limits_{t\to a^+}\intop_t^bf(x)dx.\\
&\footnotesize \bull \text{Nếu }f(c)=+\infin\text{ (với }c\in (a;b)): \intop_a^bf(x)dx= \intop_a^cf(x)dx+\intop_c^bf(x)dx
\end{aligned}

Định lý (tiêu chuẩn so sánh):

Cho f(x) và g(x) là hai hàm số không âm, khả tích trên [t; b] với mọi t ∈ (a; b] (a là điểm bất thường). Giả sử tồn tại c ∈ (a; b] sao cho f(x) ≤ k.g(x), ∀x ∈ (a; c]. Khi đó:

\begin{aligned}
&\footnotesize \bull \text{Nếu }\intop_a^bg(x)dx \text{ hội tụ thì }\intop_a^bf(x)dx \text{ hội tụ.}\\
&\footnotesize \bull \text{Nếu }\intop_a^bf(x)dx  \text{ phân kỳ thì }\intop_a^bg(x)dx \text{ phân kỳ.}\\
\end{aligned}

Hệ quả:

Với f(x) và g(x) là hai hàm số không âm và khả tích trên đoạn [t;b] với mọi t ∈ (a;b] (trong đó, a là điểm bất thường). Ta giả sử:

\lim\limits_{x\to a^+}\frac{f(x)}{g(x)}=k
\begin{aligned}
&\footnotesize \bull \text{Nếu } 0< k < +\infin \text{ thì }\intop_a^bf(x)dx \text{ và} \intop_a^bg(x)dx \text{ sẽ cùng hội tụ hoặc cùng phân kỳ.}\\
&\footnotesize \bull \text{Nếu } k=0 \text{ thì tồn tại c ∈ (a;b] sao cho }f(x) \le k.g(x), \forall x ∈ (a;c]\text{ (giống với định lý)}.\\
&\footnotesize \bull \text{Nếu } k=+\infin \text{ thì tồn tại c ∈ (a;b] sao cho } f(x) \ge k.g(x), \forall x ∈ (a;c]\text{ (ngược với định lý)}.
\end{aligned}

>>> Xem thêm: Lý Thuyết Toán 12 Cực Trị Của Hàm Số Và Phương Pháp Tìm Cực Trị

đăng ký học thử

Cách tính tích phân suy rộng

Hiện nay có rất nhiều cách tính tích phân suy rộng khác nhau. Một trong những cách được sử dụng được sử dụng nhiều nhất chính là phép biến đổi Laplace và Fourier.

Phép biến đổi Laplace và phép biến đổi Fourier

Phép biến đổi Laplace và phép biến đổi Fourier được thể hiện qua ví dụ sau:

\text{Tính: }I(x)=\intop_0^{\infin}\frac{1-cosxt}{t^2}dt

Bài giải:

Để giải bài toán này, ta áp dụng phép biến đổi Laplace hoặc Fourier cho 2 vế và tìm hàm gốc của tích phân vừa tìm được.

\begin{aligned}
&\bull \ L|I(x)|=\intop_0^\infin e^{-px}\left( \intop_0^\infin\frac{1-cosxt}{t^2}dt\right)dx\\
&=\intop_0^\infin\frac{1}{t^2}\left[ \intop_0^\infin e^{-px}(1-cosxt)dx\right]dt\\
&=\intop_0^\infin\frac{1}{t^2}L(1-cosxt)dt\\
&=\intop_0^\infin\frac{1}{t^2}\Bigg(\frac1p-\frac{p}{p^2+t^2}\Bigg)dt\\
&=\left.\frac{1}{p}arctg\frac{t}{p}\right|_{t=0}^\infin=\frac{\pi}{2p^2}\\
&\bull L^{-1}\Bigg[ \frac{\pi}{2p^2} \Bigg]=\frac{\pi}{2}x\\
&\text{Vậy }I(x)=\frac{\pi}{2}x
\end{aligned}

Khai triển tích phân thành chuỗi

Khai triển tích phân thành chuỗi thường được ứng dụng nhiều trong các bài toán tích phân phức tạp. Việc lựa chọn hàm để triển khai sẽ quyết định đến việc bài giải có được tối ưu hay không. Do đó, khi triển khai và hoán vị tích phân của tổng tích phân, ta cần chú ý đến các đối tượng thu được có đảm bảo tính hội tụ của tích phân hay không. Các em có thể thấy rõ điều này trong ví dụ dưới đây: 

\text{Tính }I=\intop_0^\infin e^{-x}\left(\intop_0^x\frac{e^{-t}-1}{t}dt\right)lnxdx

Bài giải:

Để giải được bài toán phức tạp này, ta cần áp dụng kỹ thuật khai triển chuỗi Taylor như sau:

\begin{aligned}
&I=\intop_0^\infin e^{-x}\left(\intop_0^x\frac{e^{-t}-1}{t}dt\right)lnxdx\\
&=\intop_0^\infin e^{-x}\left(\intop_0^x\frac{\sum\limits_{n=0}^\infin \frac{(-t)^n}{n!}-1}{t}dt\right)lnxdx\\
&=\sum_{n=1}^\infin\frac{(-1)^n}{n!n}\intop_0^\infin e^{-x}\left( \intop_0^xt^{n-1}dt\right)lnxdx\\
&=\sum_{n=1}^\infin\frac{(-1)^n}{n!n}\intop_0^\infin e^{-x}x^nlnxdx\\
&=\sum_{n=1}^\infin\frac{(-1)^n \Gamma'(n+1)}{n!n}\\
&=\sum_{n=1}^\infin\frac{(-1)^n \Psi(n+1)}{n}\\
&\text{Trong đó: } \Gamma(x) \text{ và } \Psi(x) \text{ là các hàm Gamma và PolyGamma.}\\
&\sum_{n=1}^\infin\frac{(-1)^n \Psi(n+1)}{n}=\gamma ln2+\intop_0^1\frac{-ln2+ln(1+t)}{1-t}dt=\frac{1}{12}(-\pi^2+12\gamma ln2+6ln^22)\\
&\text{Trong đó: } \gamma \text{ là hằng số Euler - Mascheroni.}
\end{aligned}

>>> Xem thêm: Đường Tiệm Cận Của Đồ Thị Hàm Số: Lý Thuyết Và Cách Tìm Đường Tiệm Cận

Học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh bứt phá điểm số 2022 – 2023 tại Marathon Education

Marathon Education là nền tảng học livestream trực tuyến Toán - Lý - Hóa - Văn - Anh - Sinh uy tín và chất lượng hàng đầu Việt Nam dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình giảng dạy bám sát chương trình của Bộ Giáo dục và Đào tạo, Marathon Education sẽ giúp các em lấy lại căn bản, bứt phá điểm số và nâng cao thành tích học tập.

Tại Marathon, các em sẽ được giảng dạy bởi các thầy cô thuộc TOP 1% giáo viên dạy giỏi toàn quốc. Các thầy cô đều có học vị từ Thạc Sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong giáo dục. Bằng phương pháp dạy sáng tạo, gần gũi, các thầy cô sẽ giúp các em tiếp thu kiến thức một cách nhanh chóng và dễ dàng.

Marathon Education còn có đội ngũ cố vấn học tập chuyên môn luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học tập và cá nhân hóa lộ trình học tập của mình.

Với ứng dụng tích hợp thông tin dữ liệu cùng nền tảng công nghệ, mỗi lớp học của Marathon Education luôn đảm bảo đường truyền ổn định chống giật/lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, các em có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên tại Marathon Education, các em còn nhận được các sổ tay Toán – Lý – Hóa “siêu xịn” tổng hợp toàn bộ công thức và nội dung môn học được biên soạn chi tiết, kỹ lưỡng và chỉn chu giúp các em học tập và ghi nhớ kiến thức dễ dàng hơn.

Marathon Education cam kết đầu ra 8+ hoặc ít nhất tăng 3 điểm cho học viên. Nếu không đạt điểm số như cam kết, Marathon sẽ hoàn trả các em 100% học phí. Các em hãy nhanh tay đăng ký học livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – lớp 12 năm học 2022 – 2023 tại Marathon Education ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39% giảm từ 699K chỉ còn 399K.

Các khóa học online tại Marathon Education

 

Trên đây là những kiến thức liên quan đến tích phân suy rộng – một trong những kiến thức nâng cao nên biết trong chương trình Toán THPT. Ngoài ra, các em đừng quên theo dõi website Marathon Education để cập nhật thêm nhiều kiến thức Toán – Lý – Hóa hữu ích khác. Chúc các em học tập thật tốt và luôn đạt điểm cao.

CÓ THỂ BẠN QUAN TÂM